This function fits the Dirichlet Process Mixture Model (DPMM).
Arguments
- dataset
dataframe with continuous and/or categorical variables.
- mcmc_iterations
Number of MCMC iterations.
- L
Number of DPMM components fitted.
- mcmc_chains
Number of MCMC chains fitted.
- standardise
Should continuous variables be standardised. default = TRUE
Value
Output: List of class 'dpmm_fit'
- dataset
dataframe with 1 row but defined the same way as the dataset fitted.
- L
Number of DPMM components fitted.
- mcmc_chains
Number of MCMC chains fitted.
- samples
MCMC samples.
- standardise
TRUE or FALSE whether values were standardised.
- mean_values
Mean values for covariates standardised.
- sd_values
SD values for covariates standardised.
Examples
if (FALSE) {
## load dataset
data(dataset_1)
## fit model
posteriors <- runModel(dataset_1,
mcmc_iterations = 100,
L = 6,
mcmc_chains = 2,
standardise = TRUE)
}