This function fits the Dirichlet Process Mixture Model (DPMM).
Usage
runModel(
  dataset,
  mcmc_iterations = 2500,
  thinning = 1,
  L = 10,
  mcmc_chains = 2,
  standardise = TRUE
)Arguments
- dataset
 dataframe with continuous and/or categorical variables.
- mcmc_iterations
 Number of MCMC iterations.
- thinning
 Interval for collecting MCMC samples.
- L
 Number of DPMM components fitted.
- mcmc_chains
 Number of MCMC chains fitted.
- standardise
 Should continuous variables be standardised. default = TRUE
Value
Output: List of class 'dpmm_fit'
- dataset
 dataframe with 1 row but defined the same way as the dataset fitted.
- L
 Number of DPMM components fitted.
- mcmc_chains
 Number of MCMC chains fitted.
- samples
 MCMC samples.
- standardise
 TRUE or FALSE whether values were standardised.
- mean_values
 Mean values for covariates standardised.
- sd_values
 SD values for covariates standardised.
Examples
if (FALSE) {
## load dataset
data(dataset_1)
## fit model
posteriors <- runModel(dataset_1, 
                       mcmc_iterations = 100,
                       L = 6, 
                       mcmc_chains = 2, 
                       standardise = TRUE)
}