Skip to contents

This function fits the Dirichlet Process Mixture Model (DPMM).

Usage

runModel(
  dataset,
  mcmc_iterations = 2500,
  L = 10,
  mcmc_chains = 2,
  standardise = TRUE
)

Arguments

dataset

dataframe with continuous and/or categorical variables.

mcmc_iterations

Number of MCMC iterations.

L

Number of DPMM components fitted.

mcmc_chains

Number of MCMC chains fitted.

standardise

Should continuous variables be standardised. default = TRUE

Value

Output: List of class 'dpmm_fit'

dataset

dataframe with 1 row but defined the same way as the dataset fitted.

L

Number of DPMM components fitted.

mcmc_chains

Number of MCMC chains fitted.

samples

MCMC samples.

standardise

TRUE or FALSE whether values were standardised.

mean_values

Mean values for covariates standardised.

sd_values

SD values for covariates standardised.

Examples

if (FALSE) {
## load dataset
data(dataset_1)

## fit model
posteriors <- runModel(dataset_1, 
                       mcmc_iterations = 100,
                       L = 6, 
                       mcmc_chains = 2, 
                       standardise = TRUE)
}