Predict missing values from the fitted DPMM.
Usage
predict_dpmm_fit(object, newdata, samples = seq(1000, 2500, 100), ...)
Arguments
- object
object class 'dpmm_fit'
- newdata
dataframe with missingness
- samples
vector of iterations to be used in the posterior
- ...
other parameters used in 'posterior.dpmm'
Value
A list with n entries for n rows with missingness, each entry is a dataframe with the sampled missing values.
Examples
if (FALSE) {
## load dataset
data(dataset_1)
## fit model
posteriors <- runModel(dataset_1,
mcmc_iterations = 100,
L = 6,
mcmc_chains = 2,
standardise = TRUE)
## introduce missing data
rows <- 501:550
dataset_missing <- dataset_1
dataset_missing_predict <- dataset_missing[rows,]
dataset_missing_predict[,1] <- as.numeric(NA)
# predict missing values
posteriors.dpmmfit <- predict_dpmm_fit(posteriors,
dataset_missing_predict,
samples = c(1:100))
}