Sample missing values from the fitted DPMM
Usage
posterior_dpmm(
patient,
samples,
seed = NULL,
cont_vars = NULL,
cat_vars = NULL,
mcmc_chain = NULL
)
Arguments
- patient
dataset with missing values.
- samples
vector of iterations to be used in the posterior.
- seed
specify seed to be used. (default = NULL)
- cont_vars
names of continuous variables
- cat_vars
names of categorical variables
- mcmc_chain
MCMC posterior samples of DPMM parameters
Examples
if (FALSE) {
## load dataset
data(dataset_1)
## fit model
posteriors <- runModel(dataset_1,
mcmc_iterations = 100,
L = 6,
mcmc_chains = 2,
standardise = TRUE)
## introduce missing data
rows <- 501:550
dataset_missing <- dataset_1
dataset_missing_predict <- dataset_missing[rows,]
dataset_missing_predict[,1] <- as.numeric(NA)
# predict missing values
posteriors.dpmmfit <- predict_dpmm_fit(posteriors,
dataset_missing_predict,
samples = c(1:100))
}